LEDs and Lasers 3

LEDs and Lasers

Turn off all electronic devices

LEDs and Lassers 2 Observations about LEDs and Lasers

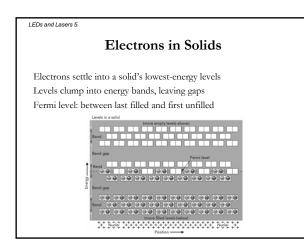
- LEDs and Lasers often have pure colors
- LEDs can operate for years without failing
- Lasers produce narrow beams of intense light
- Lasers are dangerous to eyes
- Reflected laser light has a funny speckled look

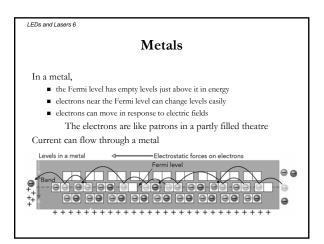
6 Questions about LEDs and Lasers

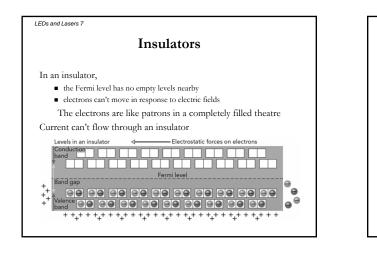
- 1. Why can't electrons move through insulators?
- 2. How does charge move in a semiconductor?
- 3. Why does a diode carry current only one way?
- 4. How does an LED produce its light?
- 5. How does laser light differ from regular light?
- 6. How does a laser produce coherent light?

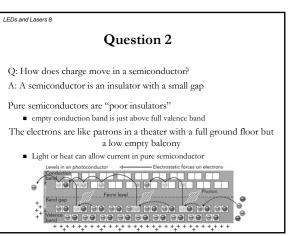
LEDs and Lasers 4

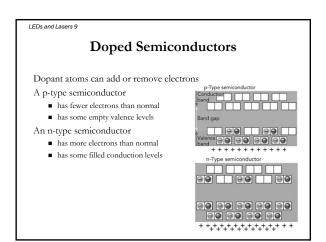
Question 1

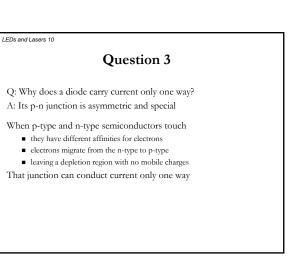

Q: Why can't electrons move through insulators? A: Electrons can't easily change levels in insulators.

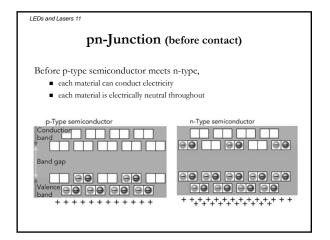

Electrons obey the rules of quantum physics

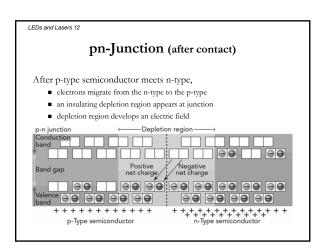

- In matter, electrons exist as quantum standing waves
 - three-dimensional patterns of nodes and antinodes
 each wave "cycles" in place—it does not change with time
 - In solids, those standing waves are called levels


To move, electrons must be able to switch levels

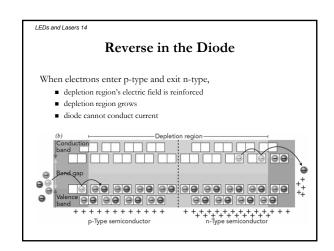

In an insulator, electrons can't easily change levels











Clicker Question

When electrons cross a diode's pn-junction from n-side to p-side, they are in the conduction band. They leave the p-side in the valence band. Shortly after crossing the junction, each electron

- releases energy by dropping from the conduction band to the valence band.
- absorbs energy by rising from the conduction band to the valence band.

LEDs and Lasers 16

Question 4

Q: How does an LED produce its light? A: Electrons emit light while changing bands

LEDs are Light-Emitting Diodes

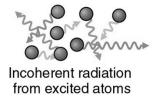
- LED is a diode and has a pn-junction
- Electrons cross junction in the conduction band
- Electrons dropping into the valence band emit light
 - Electron briefly orbits the empty valence level
 Electron drops into valence level via a radiative transition

The larger the band gap, the bluer the light

LEDs and Lasers 17

Question 5

Q: How does laser light differ from regular light? A: Laser light is a single electromagnetic wave.


Most light sources produce photons randomly

- Each photon usually has its own wave
- Laser light involves duplicate photons
 - Laser amplification duplicates an initial photon
 - Each photon becomes part of a single giant wave

LEDs and Lasers 18

Spontaneous Emission

Excited atoms normally emit light spontaneously These photons are uncorrelated and independent Each photons has its own wave mode These independent waves are incoherent light

Clicker Question

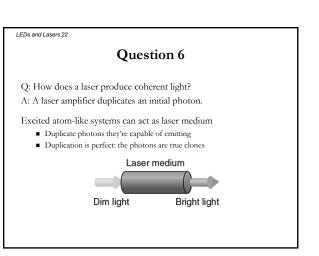
If you split the beam from a flashlight into two beams and overlap those beams on a white screen, can you see interference effects?

- A. Yes, because beams are parts of one light wave
- B. Yes, because beams contain many waves
- c. No, because too many independent light waves
- D. No, because beams don't contain waves

LEDs and Lasers 20

Stimulated Emission

Excited atoms can be stimulated into duplicating passing light These photons are correlated and identical The photons all have the same wave mode This single, giant wave is coherent light

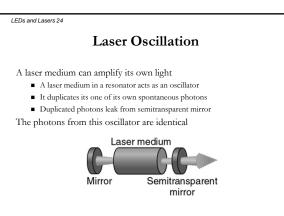

> > Coherent radiation from excited atoms

LEDs and Lasers 21

Clicker Question

If you split the beam from a laser pointer into two beams and overlap those beams on a white screen, can you see interference effects?

- A. Yes, because beams are parts of one light wave
- B. Yes, because beams contain many waves.
- c. No, because too many independent light waves
- D. No, because beams don't contain waves



LEDs and Lasers 23

Clicker Question

If you place mirrors around a laser medium,

- A. nothing will happen because the mirrors will prevent light from reaching the laser medium.
- B. a photon emitted spontaneously by the laser medium will be duplicated endlessly.

Summary about Lasers and LEDs

Lasers produce coherent light by amplification Coherent light contains many identical photons Laser amplifiers and oscillators are common LEDs are incoherent, light-emitting diodes