| Ramps 1 |
| :---: | :---: |
| RampS |
| |
| Turn off all electronic devices |

Observations About Ramps

It's difficult to lift a heavy wagon straight up
It's easer to push a heavy wagon up a ramp
The required push depends on the ramp's steepness
The gentler the slope of the ramp,

* the smaller the required push on the wagon
- the farther you must push the wagon along the ramp to raise it upward

Ramps 3

5 Questions about Ramps

1. Why doesn't a wagon fall through a sidewalk?
2. Why does a sidewalk support a wagon perfectly?
3. How does a wagon move as you let it roll freely on a ramp?
4. Why is it harder to lift a wagon up than to lower a wagon down?
5. Why is it easier to pull a wagon up a ramp than to lift it up a ladder?

Question 1

Q: Why doesn't a wagon fall through a sidewalk?
A: The sidewalk pushes up on it and supports it.
The sidewalk and the wagon cannot occupy the same space
The sidewalk exerts a support force on the wagon that
\otimes prevents the wagon from penetratitg the sidewalk's surface

- acts perpendicular to the sidewalk's surface
Δ is exerted upward by the horizontal surface of sidewalk
- can cancel the wagon's downward weight

Question 2

Q: Why does a sidewalk support a wagon perfectly?
A: The sidewalk and wagon negotiate by denting and undenting.
The wagon and sidewalk dent one another slightly

- The more they dent, the more strongly they push apart
- Sidewalk's force on wagoon affects wagon's net force and acceleration
- Wagon bounces up and down

When wagon experiences zero net force, it is at equilibrium

- At equilibrium, the wagon moves at constant velocity
- Above equilibrium, the wagon accelerates downward
- Below equilibrium, the wagon accelerates upward

Friction-like effects cause the wagon to settle at equilibrium

Ramps 5

Ramps 4

$$
\begin{aligned}
& \text { Ramps } 6 \\
& \text { Newton's Third Law } \\
& \text { For every force that one object exerts on a second object, there is an equal but oppositely } \\
& \text { directed force that the second object exerts on the first object. }
\end{aligned}
$$

Misconception Alert

The forces two objects exert on one another must be equal and opposite, but each force of that
Newton's third law. pair is exerted on a different object, so those forces do not cancel one
another.
Ramps 8

Question 3

Q: How does a wagon move as you let it roll freely on a ramp?
A: The wagon accelerates downhill

The wagon experiences two forces: its weight and a support force
The sum of those forces is the ramp force: a small downhill net force

```
Ramps }
    To start the wagon moving uphill
        * push wagon uphill more than the downhill ramp force
        net force is uphill, so wagon accelerates uphill
```

 Pushing the wagon up the Ramp
 A: You do work on the wagon when you lift it.
 The wagon does work on you when you lower it.
 Energy - a conserved quantity
 - it can't be created or destroyed
 - it can be transformed or transferred between objects
 - is the capacity to do work
 Work - mechanical means of transferring energy
 work \(=\) force \(\cdot\) distance
 (where force and distance are in same direction)
 | Ramps 11 | |
| :---: | :---: |
| | Transfers of Energy |
| Energy has two principal forms | |
| - Kinetic energy - energy of motion | |
| - Potential encergy - energy stored in forces | |
| Your work transfers energy from you to the wagon | |
| - Your chemical potential energy decreases | |
| - wagon's gravitational potential energy increases | |
| The wagon's gravitational potential energy | |
| - is defined as zero at the reference altitude (eg., ground level) | |
| - is the work you must do on the wagon to lift tit to its new altitude | |
| - is equal to the wagon's weight times its inctease in altitude | |
| gravitational potential energy $=$ weight \cdot altitude | |

Ramps 12

Question 5

Q: Why is it easier to pull a wagon up a ramp than to lift it up a ladder?
A: On the ramp, you do work with a small force over a long distance. On the ladder, you do work with a large force over a small distance.

For a shallow ramp: work $=$ Force \cdot Distance
For a steep ramp: \quad work $=$ Force \cdot Distance
For a ladder: \quad work $=$ FORCC . Distance
Ramps 13
Mechanical Advantage
Mechanical advantage is doing the same work, using a different balance of force and distance
A ramp provides mechanical advantage
You lift wagon with less force but more distance
Your work is independent of the ramp's stepness

Ramps 14Summary about RampsRamp reduces the force you must exert to lift the wagonRamp increase the distance you must push to lift the wagonYou do work pushing the wagon up the rampThe ramp provides mechanical advantage\& It allows you to push less hard on the wagon\&ut you must push the wagon for a longer distance$*$ Your work is independent of ramp's steepness	

