Falling Balls 1

# Falling Balls

Turn off all electronic devices

Falling Balls 2

## Observations about Falling Balls

When you drop a ball, it

- begins at rest,
- $\diamond\,$  soon acquires a considerable downward speed,
- and covers more and more distance each second

When you tossed a ball straight up, it

- orises to a certain height,
- comes momentarily to a stop,
- \* and then descends, much like a dropped ball

A thrown ball travels in an arc

Falling Balls 3

## 6 Questions about Falling Balls

- 1. Why does a dropped ball fall downward?
- 2. How differently do different balls fall?
- 3. How would a ball fall on the moon?
- 4. How does a falling ball move after it is dropped?
- 5. How can a ball move upward and still be falling?
- 6. How does a ball's horizontal motion affect its fall?

Falling Balls

## Question 1

Q: Why does a dropped ball fall downward?

A: The ball's downward weight causes it to accelerate downward

Earth's gravity exerts a downward force on the ball

- $\diamond\,$  That force on the ball due to Earth's gravity is called the ball's weight
- $\diamond~$  The ball's weight points toward earth's center (it defines  $\underline{downward})$

A falling ball experiences only one force: its weight

A falling ball's weight causes it to accelerate downward

Falling Balls 5

## Question 2

Q: How differently do different balls fall?

A: Not differently. They all fall together!

A ball's weight is proportional to its mass

 $\diamond~$  When you divided a ball's weight by its mass, you always get the same value:

weight of ball = 9.8 newtons kilogram

♦ Near Earth's surface, every kilogram of mass weighs 9.8 newtons!

Falling Balls 6

## Acceleration Due to Gravity

According to Newton's second law,

acceleration of ball =  $\frac{\text{net force on ball}}{\text{mean of ball}}$ 

The only force acting on a falling ball is its weight,

acceleration of falling ball =  $\frac{\text{weight of ball}}{\text{mass of ball}} = 9.8 \frac{\text{newton}}{\text{kilogram}}$ 

That ratio is the acceleration of any falling object near Earth's surface!

It is called the <u>acceleration due to gravity</u>

acceleration due to gravity = 9.8  $\frac{\text{newrons}}{\text{kilogram}}$  = 9.8  $\frac{\text{merer}}{\text{second}}$ 

Question 3

Q: How would a ball fall on the moon?

A: It would fall more slowly.

Gravity depends on mass of planet/moon and distance from its center

• Moon's mass is small, but its radius is also small, so

acceleration to moon's gravity = 1.6

Earth's gravity actually varies slightly with location

• You weigh slightly less at the Equator than at the North or South Pole

• You weigh very slightly less on a mountaintop than in a valley







Summary About Falling Balls

Without gravity, an isolated ball would coast With gravity, an isolated ball

experiences its weight,

Falling Balls 11

- accelerates downward,
- and its velocity becomes increasingly downward

Whether going up or down, it's still falling

It can coast horizontally while falling vertically